
The Lorenz SZ42 (”Tunny”) German Teleprinter Encryption Device



The Lorenz SZ42, codenamed Tunny, was a teleprinter encryption device used by Germany during
WW2 for strategic communications. Its successful cryptanalysis at Bletchley Park (BP) provided the
Allies with high-grade intelligence about several fronts, as well as for the preparations for the D-Day
landings.

The story of Tunny’s codebreaking and Colossus is well known, following the declassification of the
General Report on Tunny in 2000 (Good et al., 1945), and the publication of several books (Reeds et
al., 2015; Gannon, 2014; Copeland, 2010; Roberts, 2017; Mayo-Smith, 2014). The work on Colossus
and other machines was carried out in the Newmanry, under the leadership of the mathematician Max
Newman.

The work of the Testery, the other Tunny section at BP, is less known. Named after his commander,
Major Ralph Tester, the Testery was responsible for the development and application of hand methods,
that complemented the work of machines like Colossus. For some reason, the report on the Testery was
not declassified until 2018 (Testery, 1945).

This documents describes the functioning of the device and the outline of historical cryptanalysis
methods.

1 The Lorenz SZ42 (Tunny)

The history of the Lorenz SZ42 and the details of its design and functioning are documented in the
references (Reeds et al., 2015; Gannon, 2014; Copeland, 2010). In this section, only a brief functional
description is given.

The Lorenz SZ42 is a teleprinter encryption device. It encodes Baudot teleprinter symbols that consist
of five impulses. Each impulse can have one of two states. It can be active, denoted as cross according
to BP terminology, or x. Or it can be inactive, denoted as dot or •. The Baudot alphabet, as well as BP’s
notation for the Baudot symbols, is given in Table 1.

The Lorenz SZ42 functions as a Vernam device. It applies an XOR addition (denoted as ⊕) to encrypt
plaintext Baudot symbols. The effect of the XOR operation on a pair of impulses a and b is described in
Table 2. The XOR operation can also be applied to a pair of Baudot symbols with five impulses each. In
that case, it is applied sequentially one impulse at a time. An example is given in Table 3. It should be
noted that adding (using an XOR addition) a symbol to itself, results in the symbol • • • • • which has
only dots, as illustrated in Table 4.

The Lorenz SZ42 generates a keystream K of pseudo-random symbols and performs an XOR addition
on a stream of plaintext P, producing the ciphertext Z, as described in Equation 1, the encryption formula.

Z = P⊕K (1)

Encryption and decryption are implemented identically. This is possible since adding (XOR) the
keystream K to the ciphertext Z cancels out the effect of the keystream K originally added during en-
cryption, as shown in Equation 2, the decryption formula.

Z⊕K = (P⊕K)⊕K = P⊕ (K⊕K) = P (2)

As a result, two machines using identical settings can communicate properly, one side encrypting
plaintext and transmitting ciphertext, the other receiving and decrypting the ciphertext.

The functioning of the Lorenz SZ42 is illustrated in Figure 1.



Symbol BP Meaning in Meaning in
Notation Letter Shift Figure Shift

••••• / null
••••x E E 3
•••x• 4 carriage return
•••xx A A -
••x•• 9 space
••x•x S S ’
••xx• I I 8
••xxx U U 7
•x••• 3 line feed
•x••x D D Who are you?
•x•x• R R 4
•x•xx J J BELL
•xx•• N N ,
•xx•x F F %
•xxx• C C :
•xxxx K K (
x•••• T T 5
x•••x Z Z +
x••x• L L )
x••xx W W 2
x•x•• H H £
x•x•x Y Y 6
x•xx• P P 0
x•xxx Q Q 1
xx••• O O 9
xx••x B B ?
xx•x• G G &
xx•xx 5 or + figure shift
xxx•• M M .
xxx•x X X /
xxxx• V V ;
xxxxx 8 or - letter shift

Table 1: The Baudot Teleprinter Alphabet

a b a⊕b
• • •
• x x
x • x
x x •

Table 2: The XOR (⊕) Operation

K •xxxx
G xx•x•

K ⊕ G x•x•x

Table 3: XOR (⊕) on the Symbols K and G

G xx•x•
G xx•x•

G ⊕ G •••••

Table 4: XOR (⊕) on the Same Symbol



Figure 1: Tunny Lorenz SZ42 – Functional Diagram

The keystream K is generated by a set of twelve wheels, divided into three functional groups:

• Five χ wheels, χ1 to χ5: Those wheels have 41, 31, 29, 26, and 23 pins, respectively. Each pin
can be set to either an active (cross) or an inactive (dot) state. The χ wheels regularly step after the
encryption (or decryption) of each symbol. The stream of Baudot symbols generated by the five χ

wheels is denoted as the χ stream.

• Five ψ wheels, ψ1 to ψ5: Those wheels have 43, 47, 51, 53, and 59 pins, respectively. Each pin
can be set to either an active or an inactive state. Their stepping is governed by the motor wheels.
Either all five ψ wheels step or none of them steps. The actual stream of symbols generated by the
ψ wheels is denoted as the ψ ′ stream. It differs from a theoretical ψ stream, that would have been
generated if the ψ wheels always stepped. The ψ ′ stream is an extended version of the ψ stream,
with symbols duplicated at positions where the ψ wheels did not step.

• Two motor or µ wheels, µ1 and µ2: Wheel µ1 has 61 pins, which govern the stepping of wheel
µ2. If the current pin of wheel µ1 is active (cross), wheel µ2 steps. Wheel µ2 has 37 pins, and if
its current pin is active, all five ψ wheels step. The single-impulse stream generated by wheel µ2
is denoted as the base motor stream. In later models of the Lorenz SZ42, various motor limitations
were introduced to reduce the number of motor stops, that is, positions where the ψ wheels are not
stepping. A motor limitation forces the ψ wheels to move at positions where the base motor stream



is a dot, and the ψ wheels would otherwise not step. Motor limitations are governed by a combina-
tion of one or more impulses from the P, χ , and ψ ′ streams, at previous positions. The combined
effect of the µ wheels (the base motor stream) and of the motor limitations is denoted as the total
motor stream. A description of the various types of motor limitations may be found in (Reeds et al.,
2015, Chapter 11B, p. 13), reproduced in the Appendix. As described in Section 2, most attacks
against Tunny take advantage of skewed statistics at motor stop positions. Motor limitations are
intended to reduce the number of motor stops, making cryptanalysis more challenging.

The keystream K consists of the (XOR) addition of two streams, χ , and ψ ′:

K = χ⊕ψ
′ (3)

Therefore:
Z = P⊕K = P⊕χ⊕ψ

′ (4)

We define D, also known as the dechi stream (or simply, the dechi), as:

D = Z⊕χ (5)

The term dechi originates from the fact that we are removing χ from the ciphertext Z, by adding it so
that the original contribution of χ cancels out:

D = Z⊕χ = P⊕χ⊕ψ
′⊕χ = P⊕ψ

′. (6)

If we add ψ ′ to both sides of D = P⊕ψ ′, it also follows that P = D⊕ψ ′.
Note that they were restrictions on the settings of some wheel patterns, as shown in Figure 2 and

Figure 3.

Figure 2: Restrictions on χ wheel patterns (Source: (Reeds et al., 2015, Chapter 2, p. 52))

Additional restrictions are described in the simulator code.

2 Tunny Codebreaking Overview

A complete decryption of the machine and of the hand methods for the cryptanalysis of Tunny, as well
as of the multitude of codebreaking scenarios the methods cover, is outside the scope of this paper and
may be found in the Testery report and the GRT (Testery, 1945; Good et al., 1945). This section focuses
on the main cryptanalytic scenarios.

The most challenging scenario is breaking, when the wheel patterns are unknown, there are no mes-
sages in depth (encrypted with the same key settings), and no crib is available. Historically, codebreaking
for such a scenario included the following steps:

• The recovery by the Newmanry of the χ wheel patterns, using the rectangling method developed by
Bill Tutte, and later performed with the help of Colossus (Reeds et al., 2015, p. 110-112). After the
χ wheel patterns had been recovered, the dechi stream D = Z⊕χ was produced by the Newmanry.

• The recovery by the Testery of the ψ ′ stream from the dechi stream D, using hand methods. From
ψ ′, the ψ wheel patterns could be recovered.



Figure 3: Restrictions on ψ wheel patterns (Source: (Reeds et al., 2015, Chapter 2, p. 54))

• The recovery of the motor wheel patterns, also by the Testery, from the ψ ′ stream.

• The decoding of the ciphertext (by the Testery).

For setting, when the wheel patterns are known, but the wheel starting positions are unknown for a
specific ciphertext, the process was simpler. Historically, χ-setting was done by the Newmanry, and the
settings for the ψ and motor wheels were recovered by the Testery.1

In case two or more messages in depth were available, their plaintexts could be recovered using lin-
guistic methods, and using segments of plaintext, the keystream K(= Z⊕P) could also be extracted.
From K, the wheel patterns were then recovered by the Testery.2 A similar process was possible with the
help of a long-enough crib.

But unless a crib is available, or plaintext can be extracted from depths, all attacks – for setting and
breaking – rely on a major weakness of Tunny, which is described here.

We first introduce the notation ∆, or differenced stream. A differenced stream consists of adding (using
XOR addition) to each element of an original (undifferenced) stream the value of the element right after
it. Differencing can be applied to a single impulse, or to a stream of Baudot symbols, impulse by impulse.
An important characteristic of a differenced stream is that if two consecutive symbols are identical, their
differenced value is the symbol ••••• (all impulses inactive).

In Section 1, Equation 6, it was shown that the dechi stream D = Z⊕χ = P⊕ψ ′.
We analyze here the frequency distribution of the symbols in the dechi stream D. The ψ wheels may

or may not step after each encryption (or decryption), but if they step, they all step together. When the
wheels do not step (i.e., a motor stop), the corresponding symbol of ψ ′ is duplicated, and as a result,
the corresponding ∆ψ ′ symbol has only dots (• • • • •). This means that at positions where there is a
motor stop, ∆D = ∆P. Therefore ∆D at motor stops has the same frequency distribution as for ∆P.3 Even
though the symbols of ∆D are (roughly) randomly distributed at positions the ψ wheels step, overall, the
frequency distribution of ∆D symbols is skewed toward the frequency distribution of ∆P symbols.

This important characteristic can be exploited for setting the χ wheels. While the plaintext for a given
ciphertext is unknown, it is possible to compute the distribution of the expected differenced plaintext ∆P,
using a corpus of the language (e.g., from prior decryptions). To set the χ wheels, we search for the χ

wheel positions that result in the symbol distribution of ∆D = ∆Z⊕∆χ being as close as possible to the
1For some motor limitations (or if no motor limitation was used), the setting of the ψ and motor wheels could also be

performed using the more advanced models of Colossus.
2Turingery, a method for extracting the χ patterns from K, was developed by Alan Turing.
3During cryptanalysis, the positions where there is a motor stop and ψ wheels do not step are unknown.



expected frequency distribution of ∆P in the reference corpus. A similar methodology can be applied for
χ breaking, to find the optimal χ patterns, so that the resulting ∆D best matches the expected distribution
of ∆P in the reference corpus.

Due to the limits of WW2 technology, those techniques could only be applied to a pair of impulses at
a time, e.g., impulses 1 and 2 (the so-called ∆1+2 method), rather than to all five impulses at the same
time (Reeds et al., 2015, p. 110-112).

The same characteristic of ∆D can be used to recover ψ ′ from dechi, as described in Section 3.

3 Historical Manual Testery Methods

The main Testery methods are based on the characteristic of ∆D, as described in Section 2. Due to the ψ

wheels often not stepping, there are numerous repetitions of consecutive symbols in ψ ′, and as a result a
high frequency of ••••• symbols (all impulses inactive) in ∆ψ ′.

Due to security measures introduced by the Germans (Reeds et al., 2015, p. 306), there is also a
high frequency of xxxxx symbols (all five impulses active) in ∆ψ ′, at positions where the ψ wheels
step.4 Furthermore, the frequency of ∆ψ ′ symbols with a majority of crosses (e.g., •xxxx or ••xxx) is
significantly higher than the frequency of symbols with only one or two crosses (e.g., •xx•• or ••x••).
In addition, the probability for a • • • • • symbol at positions where the ψ wheels are stepping is very
low.

Historically, the work of the Testery started after receiving the dechi D, extracted from ciphertext by
the Newmanry using mechanized methods. The Testery cryptanalysts tried various possible cribs P at
different positions, examining the resulting (putative) ∆ψ ′ = ∆D⊕∆P. A putative ∆ψ ′ mostly consisting
of ••••• or xxxxx symbols, and the remaining symbols with a majority of crosses, was likely to indicate
a correct crib guess. Still, there was always some probability for a wrong guess, especially if the crib
was short. This process was labor-intensive and required extensive trial-and-error by the cryptanalysts,
who had to memorize the full XOR addition table (32 · 32 = 1024 elements) to mentally perform XOR
additions (Roberts, 2017; Mayo-Smith, 2014).

For ψ setting, a machine named Dragon was developed to “drag” a crib over the whole dechi stream
(Reeds et al., 2015, p. 346). For ψ breaking, there was no other choice but to test cribs manually.

After positioning a likely crib, the cryptanalyst would then try to extend it by testing additional sym-
bols inserted before and after the crib, and checking the resulting new putative ∆ψ ′. With a long enough-
crib and from the resulting ψ ′ segment (ψ ′ = D⊕P), it was possible to recover the ψ patterns.

With modern computing, a more efficient process can be implemented.

Figure 4: Example of Crib Hit

Figure 4 shows an example of a particularly good crib hit. In this example, the elements of ∆ψ ′ have
either no crosses, only crosses, or a majority of crosses (three or four).5 In a more typical case, there will
be less ”good” symbols, and the ψ wheels are likely to step more often.

A manual attempt is then made to extend the most promising cribs, by guessing additional symbols
at their beginning and at their end, so that the (longer) putative ∆ψ ′ still has good characteristics. With
a solid knowledge of the language and of the traffic contents, it is possible to extend the crib further so
that a long stretch of ψ ′ can be obtained. Then, by removing repeated consecutive symbols from ψ ′, it is

4To create a seemingly more random output Z as well as ∆Z, each pin on a given ψ wheel was more likely to be followed
by a pin in the opposite state.

5As shown in Figure 1, in BP notation / represents the • • • • • symbol, 8 represents xxxx, K represents •xxxx, and M
represents xxx••.



possible to obtain the (unextended) ψ stream and from it to extract the ψ wheel patterns. Historically, the
Testery cryptanalysts would first recover the ψ patterns as described here, and finally, the motor wheel
patterns.

4 Tunny Simulator

A Java-based simulator is available, that implements the various functions of Tunny. With this simulator,
it is possible:

• To encrypt a plaintext.

• To decrypt a ciphertext.

• To run an virtual Colossus machine, to recover the starting position of the χ1 and χ2 wheels.

Usage:
To encrypt:

java -jar tunny.jar -e key-filename -i plaintext-filename
plaintext-filename contains the plaintext in British notation.

To decrypt:
java -jar tunny.jar -d key-filename -i ciphertext-filename
ciphertext-filename contains the ciphertext in British notation.

To run a virtual Colossus machine:
java -jar tunny.jar -c key-filename -i ciphertext-filename
key-filename must contain at least the first two lines of the key with the CHI1 and CHI2 wheel patterns.
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Appendix – Motor Limitations



Figure 5: Motor Limitations (Source: (Reeds et al., 2015, Chapter 11B, p. 13))


