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1 Introduction

Substitution-permutation networks (SPN) are easy to build block ciphers consist-
ing of substitutions, permutations, and XOR-operations. Many modern ciphers,
like AES (Daemen and Rijmen, 1999), are SPNs and are built using the afore-
mentioned building blocks. SPNs usually consist of several rounds performing the
same steps again and again. For each round, a different round key is used. To
decrypt an SPN-encrypted text, the ciphertext is given to the reversed network.
Here, the inverse S- and P-boxes are used and the round keys are given in the
reversed order.

In this document, we specify the “Mystery Cipher 1” (MC1). MC1 is a 3-round
SPN (toy-)cipher with a total key size of 64 bit and a block size of 16 bit. It is in-
tended for educational purposes, e.g. applying modern cryptanalysis techniques to
it. We also present this cipher in different MysteryTwister C3 (MTC3 Team, 2019)
challenges, for example for attacking it with differential cryptanalysis.

The rest of the document is structured as follows: First, we introduce the
notation used in this document. After that, each building block of the cipher is
presented. Then, we specify the complete encryption and decryption processes,
and give a set of test vectors. After that, we give a set of test vectors. Finally, we
present some basic cryptanalysis and, additionally, literature, which is helpful for
cryptanalyzing the cipher.

2 Notation

We use the following notation throughout this document:

– Plaintext is P , e.g. a 16-bit plaintext
– Ciphertext is C, e.g. a 16-bit ciphertext
– Key is K, e.g. a 64-bit key
– Round keys K0, K1, ..., Kn, e.g. four 16-bit round keys
– XOR is the bit-wise exclusive or of two bit-strings
– S-box is a substitution box
– P-box is a permutation box

3 Building Blocks

MC1 consists of three main building blocks: (1) a 4-bit wide S-box, (2) a 16-bit
wide P-box, and (3) an XOR operation of the 16-bit round key with plaintext or
ciphertext. In the following, we present each building block in detail.



3.1 S-box (4 bits)

A substitution-box (S-box) substitutes a given bit input sequence to an output
bit sequence. The 4-bit S-box takes four bits as input and returns four bits as
output. The S-box is the non-linear part of the cipher. It is defined as follows:

S−box =
{

10 , 05 , 15 , 08 ,
11 , 00 , 03 , 07 ,
01 , 13 , 09 , 12 ,
06 , 14 , 02 , 04

}
The S-box contains 16 different output values for the 16 different input values.

For example, if the input of the S-box is 0, the output is 10. Another example: If
the input of the S-box is 8, the output of the S-box 1.

Consequently, the reverse S-box is defined as follows:

S−box R =
{

05 , 08 , 14 , 06 ,
15 , 01 , 12 , 07 ,
03 , 10 , 00 , 04 ,
11 , 09 , 13 , 02
}

3.2 P-box (16 bits)

The P-box permutates a 16-bit input to a 16-bit output. It is defined as follows:

15      14      13      12     11      10     09      08      07      06     05      04      03     02      01      00

15      14      13      12     11      10     09      08      07      06     05      04      03     02      01      00

Fig. 1. P-box of MC1

Here, bit 0 is mapped to bit 6, bit 1 is mapped to bit 13, bit 2 is mapped to
bit 2, and so on.

Consequently, the reverse P-box can be constructed by reading the P-box from
bottom to top. Thus, bit 0 is mapped to bit 14, bit 1 is mapped to bit 13, bit 2
is mapped to bit 2, and so on.
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3.3 XOR

The XOR is defined as the exclusive-or of the plain- or ciphertext with a round
key. Thus, Ci = Pi ⊕Ki and Pi = Ci ⊕Ki.

4 Encryption and Decryption

This section defines the complete cipher based on the aforementioned building
blocks.

MC1 takes a 16-bit plaintext block P as input and returns a 16-bit ciphertext
block C as output. Furthermore, it uses four 16-bit round keys (K0, K1, K2,
and K3) as input. Thus, a 64-bit key is split into four round keys, e.g. K =
K0‖K1‖K2‖K3, where ‖ is the bitwise-concatenation of each of the round keys.

The overall cipher is defined as follows:

XOR

S-box1,1 S-box1,2 S-box1,3 S-box1,4

P-box

XOR

S-box2,1 S-box2,2 S-box2,3 S-box2,4

P-box

XOR

S-box3,1 S-box3,2 S-box3,3 S-box3,4

XOR

P

C

K0

K1

K2

K3

Round 1

Round 2

Round 3

Fig. 2. Mystery Cipher 1

The first two rounds consist of three steps (XOR, substitution, and transpo-
sition):

1. XOR: ai = Ci−1 ⊕Ki, where Ci−1 is the output of the previous encryption
round

2. On each 4-bit part of ai, we apply the 4-bit S-box in parallel. The result bi is
the bit-wise concatenation of the four S-box outputs

3. Permutation: Ci =P-box(bi)
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In the last round, we omit the transposition but additionally apply a final XOR of
the last round key K3 on C3. Clearly, the input of the first round is the plaintext
P and the output C3 of the last round XORed with the last round key K3 is the
output ciphertext C.

To decrypt a given text, we use the inverse S-box and the inverse P-box. Also,
we apply the round keys in the reversed order.

In our visualization in Figure 2 the S-boxes are indexed with i and j, where
i is the number of the round and j is the number of the S-box offset. So, the
first S-box is S-box1,1, the second S-box is S-box1,2, and so on. Regardless of the
indexes, the S-boxes are always the same one S-box as defined in Section 3.1.

5 Test Vectors

In this section, we give some test vectors that are intended for testing implemen-
tations of the MC1. P, C, and K are given as 16-bit integers (little endian).

t e s t vec to r #1
K: 0 , 0 , 0 , 0
P: 0
C: 57615

t e s t vec to r #2
K: 0 , 0 , 0 , 0
P: 1500
C: 9548

t e s t vec to r #3
K: 1 , 2 , 3 , 4
P: 2
C: 60017

t e s t vec to r #4
K: 1 , 2 , 3 , 4
P: 4
C: 25977

t e s t vec to r #5
K: 1 , 2 , 3 , 4
P: 16
C: 16634

t e s t vec to r #6
K: 1 , 2 , 3 , 4
P: 256
C: 37483

t e s t vec to r #7
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K: 17 , 25 , 50 , 100
P: 4564
C: 7948

6 Cryptanalysis and Literature

In this last section, we first have a look at the keyspace size of the cipher and
discuss a brute-force attack on it. After that, we present literature on differential
cryptanalysis useful for analyzing this cipher. Also, we give a hint on an example
implementation of differential cryptanalysis.

6.1 Keyspace Size and Brute-Force Attack

MC1 needs four 16-bit round keys, which are based on a single 64-bit key. As
a good practice, the key should be selected randomly. Like with every cipher,
MC1 can be attacked (ciphertext-only) with an exhaustive keysearching attack
aka a brute-force attack. Here, every possible key is tested by decrypting the
given ciphertext and then checking, if we obtained valid plaintext, e.g. using the
entropy function. The correct plaintext is assumed to have the lowest entropy
value. Clearly, we assume that we have enough ciphertext material, thus, using
the entropy function is possible. Since we have a 64-bit cipher, a total of 264 =
18, 446, 744, 073, 709, 551, 616 keys needs to be tested. Thus, if a single computer
can test 20 million keys per second, it would search for about 29, 247 years. To
reduce the duration of this attack to one year, consequently almost 30 thousand
computers are needed to work in parallel and all the time. Thus, a brute-force
attack on MC1 is not practical feasible.

6.2 Related Work about Differential Cryptanalysis

MC1 is vulnerable to differential cryptanalysis (Biham and Shamir, 1991). Differ-
ential cryptanalysis is a chosen-plaintext attack developed by Eli Biham and Adi
Shamir in the 1980s. This attack looks at how differences in input blocks affect
the resulting difference of output blocks of a cipher. Using a key recovery attack,
it is possible to recover all round keys of a block cipher, if it is not resistant to
differential cryptanalysis.

Heys developed a tutorial (Heys, 2002) which can be used to attack MC1.
Also, the book “The Block Cipher Companion” (Knudsen and Robshaw, 2011,

p. 109 - 126) is useful for implementing differential cryptanalysis on MC1.
The (German) master’s thesis (Bender, 2019) describes in detail the differen-

tial cryptanalysis of SPNs.
Within his masters thesis, Bender also developed three tutorials on differential

cryptanalysis, which are part of the open-source software CrypTool 2 (Kopal et al., 2014).
Figure 3 shows the third tutorial on differential cryptanalysis implemented in
CrypTool 21.

1 You can download CrypTool 2 for free from https://www.cryptool.org/
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Fig. 3. Screenshot of CrypTool 2 with opened differential cryptanalysis tutorial 3
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