
Bigram Substitution – Part 1
(Tutorial)

Author: Lillin Modi + BE

September 2025

Bigram Substitution – Part 1 (Tutorial) September 2025

Bigram Substitution – Part 1 (Tutorial)

This is a challenge with very detailed explanations, so you can learn a lot about substitution ciphers.
Youwill be given the tools to find the solutiondirectly. However, youwill learn themost if youprogram
such a tool yourself.

Simplemonoalphabetic substitution ciphers

Simple monoalphabetic substitution ciphers (MASC) replace every element (e.g., letters) in the plain‑
text (PT) with exactly one element from the ciphertext (CT). The plaintext alphabet contains all ele‑
ments that can appear in the PT in an ordered fashion. In the ciphertext alphabet, these elements
appear in a different arrangement (permutation), so that each element in the PT alphabet is assigned
to exactly one element in the CT alphabet, and both alphabets contain all elements. This can also be
seenmathematically as a bijective mapping.

For the PT alphabet of length 26 | A | B | C | … | X | Y | Z |

there are 26! possible CT alphabets, e.g., | B | X | Z | … | Y | C | A |

The CT alphabet is then the key for this encryption method.

To apply the method by hand, both alphabets are often written directly below each other.

A B C … X Y Z

B X Z … Y C A

In this table, during encryption, the letter B in the plaintext is mapped to the letter X in the cipher‑
text.

For an alphabet of length n, there are𝑛! different permutations. This number is very large even for an
alphabet of length 26: 26! ≈ 4 × 1026 ≈ 288

Tocalculate suchnumbers, youcanuse the factorial function fromPython’s math moduleandoutput
the value in scientific notation by first converting it to a string and float:

1 import math
2 math.factorial(3)
3 # yields 6
4 print("{:e}".format(math.factorial(26)))
5 # yields '4.032915e+26'

For very large numbers withmore than 300 digits, the above conversion doesn’t work, so you use the
decimal package:

Author: Lillin Modi + BE 1

https://mysterytwister.org

Bigram Substitution – Part 1 (Tutorial) September 2025

1 import math
2 import decimal
3 c=math.factorial(576)
4 dc = decimal.Decimal(c)
5 print(format(dc, '.2e'))
6 # yields 4.26e+1341
7 print("{:.2e}".format(dc))
8 # yields '4.26e+1341'

The number of different keys for amethod is also referred to as the key space of themethod. You can
find manymore details on this in the CrypTool book [1], Chapter 1.6, page 8 ff, Table 1.1.

However, a large key space is only a necessary condition for a usable encryption method. Other re‑
quirements are resistance to attacks where either only the CT is known (ciphertext‑only attack, COA)
or where one or more CT‑PT pairs are known (known‑plaintext attack, KPA).

If theattackeronlyhas theciphertext and tries to crackacipher, thismeans theywant toeither find the
PT or determine the key, or both. If the attacker has a pair of corresponding plaintext and ciphertext,
this means they want to find the key.

Both types of attacks against a simplemonoalphabetic substitution are easy if the alphabet is only 26
characters long and the plaintext is normal language. If you have a much longer alphabet, only the
known‑plaintext attack (KPA) is still very simple.

Simplemonoalphabetic substitution ciphers with long alphabets

Instead of building the PT alphabet from single letters (1‑grams) as above, you can also build it from
all combinations of double‑letters (2‑grams). The PT alphabet then looks like this:

AA | AB | AC | … | ZX | ZY | ZZ |

With 26 different single letters, there are 262 = 676 different letter pairs. This means the PT alphabet
has a length of 676. With the number of permutations, you can calculate howmany possibilities there
are for the CT alphabet. For n=676 elements, this number is n! (n factorial), a number with over 1600
decimal places (see the following Python code).

1 c=math.factorial(676)
2 dc = decimal.Decimal(c)
3 print("{:.2e}".format(dc))
4 # yields 1.88e+1621

A specific permutation or a specific definition of the CT alphabet is then our key. In the following, we
have used a randomly ordered alphabet of bigrams for the challenge.

Author: Lillin Modi + BE 2

https://mysterytwister.org

Bigram Substitution – Part 1 (Tutorial) September 2025

Challenge

For this challenge, the bigram substitution was used as cipher. You receive the PT and the CT in two
files:

• bgs_plaintext.txt
• bgs_ciphertext.txt

With these, you can then perform a KPA.

The idea for theplaintext comes fromthenovel “PostMortem”byDavid Lagercrantz, (c) 2025, inwhich
the song “Take This Waltz” by Leonard Cohen plays an important role.

Your task is to find the key and submit it in a single‑line representation (only the CT alphabet). If you
cannot assign a PT bigram to a CT bigram, write ?? .

The solution could look like this: DE GH IK ZR ?? HG ?? ?? SI PQ …

It doesn’t matter whether you use a space, a tab, or a comma as a separator.

Please check before submission that you list 676 bigram pairs, including the ?? , and that apart from
?? , no bigram appears twice.

Tools

Attached are two Python programs for the bigram substitution cipher:

• 2-gram-subst.py Tasks: gen key, enc, dec, do a simple KPA
• test-genkey.py Tasks: generate three keys: identity, reverse, random

With the following command in a terminal, you can see the options for the “kpa” subcommand:

1 python 2-gram-subst.py kpa --help

Possible solution path with the provided tool:

The following call attempts to determine the key from amatching pair of PT and CT:

1 python 2-gram-subst.py kpa --plaintext bgs_cleanedPT.txt --ciphertext
bgs_ciphertext.txt

If you also add the options --outkey and --cols 0 , you will get a 2028‑byte file that displays
the found key in a single line: FI KC VH SQ ?? RO QX ?? YG ?? LE ... WK ?? ??
BY ?? ?? ??

Author: Lillin Modi + BE 3

https://mysterytwister.org

Bigram Substitution – Part 1 (Tutorial) September 2025

Outlook on further challenges in the bigram substitution series

This challenge was about understanding the encryption method and possibly the provided Python
tools – in case you don’t write your own tools.

In subsequent parts of the series:

• The tools for the solution will no longer be provided, but you now have a good foundation.
• The plaintext will be incomplete (partial known‑plaintext attack, partial‑KPA) or only the cipher‑
text will be given (COA).

If you are already interested in how long the ciphertexts must be for ciphertext‑only attacks (COA) on
this cipher, here are a few references (mostly by Schmeh/Dunin/van Eycke/Helm):

• https://dspace.ut.ee/items/806903ff‑2f33‑4676‑a1be‑5664bdb660b3
• https://dspace.ut.ee/server/api/core/bitstreams/c2e6dc31‑5d2a‑4245‑949c‑e26aa2a514be/c
ontent

• https://scienceblogs.de/klausis‑krypto‑kolumne/2017/02/13/bigram‑substitution‑an‑old‑
and‑simple‑encryption‑algorithm‑that‑is‑hard‑to‑break/

Attached files for the solvers

• 2-gram-subst.py Python program for the bigram substitution cipher (encryption and de‑
cryption, simple KPA, utils)

• test-genkey.py Small test program that generates the example keys below using the first
Python program

• bgs_plaintext.txt Original plaintext
• bgs_cleanedPT.txt Plaintext file (stripped down to alphabet characters). This file was
encrypted

• bgs_ciphertext.txt Ciphertext file (result of the encryption)
• id.txt Example key file that maps everything to itself
• rev.txt Example key file that maps the first bigram to the last
• rnd.txt Example key file with a random permutation

References

[1] Esslinger, B.: Learning and experiencing cryptography with CrypTool and SageMath (Artech
House, Norwood, 2024).

Author: Lillin Modi + BE 4

https://dspace.ut.ee/items/806903ff-2f33-4676-a1be-5664bdb660b3
https://dspace.ut.ee/server/api/core/bitstreams/c2e6dc31-5d2a-4245-949c-e26aa2a514be/content
https://dspace.ut.ee/server/api/core/bitstreams/c2e6dc31-5d2a-4245-949c-e26aa2a514be/content
https://scienceblogs.de/klausis-krypto-kolumne/2017/02/13/bigram-substitution-an-old-and-simple-encryption-algorithm-that-is-hard-to-break/
https://scienceblogs.de/klausis-krypto-kolumne/2017/02/13/bigram-substitution-an-old-and-simple-encryption-algorithm-that-is-hard-to-break/
https://us.artechhouse.com/Learning-and-Experiencing-Cryptography-with-CrypTool-and-SageMath-P2378.aspx
https://mysterytwister.org

	Bigram Substitution – Part 1 (Tutorial)
	Simple monoalphabetic substitution ciphers
	Simple monoalphabetic substitution ciphers with long alphabets
	Challenge
	Tools
	Outlook on further challenges in the bigram substitution series
	Attached files for the solvers

	References

