MysteryTwister C3

THE CRYPTO CHALLENGE CONTEST

Modular Sequences

Author: Chaoyun Li, ECRYPT-NET, KU Leuven

August 2018

Modular Fibonacci Sequences

You are familiar with the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21, \cdots
$$

If the numbers are taken modulo 2 , then the sequence would be

$$
0,1,1,0,1,1,0,1,1, \cdots
$$

which is a periodic binary sequence with minimal period 3 .

Problem 1: What is the sequence modulo 3? modulo 5?

Binary Sequences

Consider the class of recurrence sequences modulo 2. The sequence s_{i} is determined by the following recurrence relation:

$$
\begin{equation*}
s_{i+6}=s_{i}+s_{i+5} \quad(\bmod 2), i \geqslant 0 \tag{1}
\end{equation*}
$$

where the initial values $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ are given integers. For instance, if we have $s_{0}=s_{1}=s_{2}=s_{3}=s_{4}=s_{5}=0$, then it's the all zero binary sequence, which trivially has minimal period 1 .

Problem 2: What is the minimal period of the resulting sequence for arbitrary initial values $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}$?

Binary Sequences - Hints

- It suffices to consider binary initial values due to the mod 2 operation.
- Consider the vectors $\left(s_{i}, s_{i+1}, \cdots, s_{i+5}\right)$ for $i \geqslant 0$.

Challenge

Your task is to solve the problems 1 and 2.

Please enter the solution without any spaces in the following way: sequencemod3sequencemod5minimalperiod

Example:
sequence mod 3: 1234
sequence \bmod 5: 12345
minimal period: 20
\rightarrow solution: 12341234520

