MysteryTwister C3

THE CRYPTO CHALLENGE CONTEST

Lightweight Introduction to Lattices - Part 2

Author: M. Dimitrov, B. Esslinger

June 2020

Introduction (1/5)

This challenge series accompanies the basic theory from a chapter called "LIGHTWEIGHT INTRODUCTION TO LATTICES". The chapter is part of the CrypTool Book [1].

Some lattice-based cryptography schemes are secure against quantum computers. Therefore, these constructions are relevant for current post-quantum cryptography research.

This challenge uses vectors to hide a famous quote in modern art. Can you reveal it?

Introduction (2/5)

We can represent a system of linear equations by a product of matrices. Let's consider the following system of equations:

$$
\left\{\begin{aligned}
x+9 y+3 z & =61 \\
2 x+4 y+8 z & =94 \\
5 x+7 y+6 z & =128
\end{aligned}\right.
$$

We can transfer the same system of equations into a product of matrices:

$$
\left(\begin{array}{lll}
1 & 9 & 3 \\
2 & 4 & 8 \\
5 & 7 & 6
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
61 \\
94 \\
128
\end{array}\right)
$$

Introduction (3/7)

We can further automate this process by using SageMath [2]:

```
sage: M = matrix([[1,9,3], [2,4,8], [5,7,6]])
sage: r = matrix([[61],[94],[128]])
sage: M.solve_right(r)
```

Which yields the final solutions $x=13, y=3$, and $z=7$.

Introduction (4/5)

A matrix is arranged in rows and columns. The matrix M here is a 3×3-matrix, since it has 3 rows and 3 columns, and the matrix r is a 1×3 matrix, since is has 1 row and 3 columns. Furthermore, r can be viewed as a vector, since it consists of only 1 row.

Definition A directed line from the point $P\left(x_{1}, x_{2}\right)$ to the point $\mathrm{Q}\left(\mathrm{y}_{1}, y_{2}\right)$ is a vector with the following components:

$$
\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OS}}=\left(s_{1}, s_{2}\right)=\left(y_{1}-x_{1}, y_{2}-x_{2}\right)
$$

The starting point of the vector $\overrightarrow{O P}=\left(x_{1}, x_{2}\right)$ is at the origin $\mathrm{O}=(0,0)$ and the end point is $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

Introduction (5/7)

> Let's express the vectors $\overrightarrow{P Q}$ and $\overrightarrow{R Q}$ having the three points $P(0,1)$, $Q(2,2)$ and $R(1.5,1.5)$ with the use of SageMath:

```
sage: vOP = vector([0,1])
sage: vOQ = vector([2,2])
sage: vOR = vector([1.5,1.5])
sage: vPQ = vOQ - vOP
sage: vRQ = vOQ - vOR
sage: print(vPQ, vRQ)
(2,1) (0.5, 0.5)
```


Introduction (6/7)

Figure: Finding vectors

Introduction (7/7)

Addition of vectors, multiplication of a scalar with a vector For any two vectors $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2} and a scalar k, the sum of $x+y$ and the product $k x$ are defined as follows:

$$
x+y=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right] \text { and } k x=\left[\begin{array}{l}
k x_{1} \\
k x_{2}
\end{array}\right]
$$

Challenge (1/2)

Can you find the famous (English) quote hidden in the puzzle challenge in the figure of the following slide? Please hand in the solution without spaces.

Hint: ASCII (American Standard Code for Information Interchange) is involved.

Challenge (2/2)

Figure: Puzzle Challenge

References

1. The CrypTool Book, Chapter 12. https://www.cryptool.org/en/ctp-documentation/ctbook
2. SageMath can either be downloaded or used online.

- Download SageMath: https://www.sagemath.org/
- SageMathCell: https://sagecell.sagemath.org/
- CoCalc: https://cocalc.com/

