MysteryTwister C3

THE CRYPTO CHALLENGE CONTEST

The Syllabary Cipher - Part 5

Author: Nils Kopal
October 2022

The Syllabary Cipher

路察兰自？Syllabary Ciphe										
	1	2	3	4	5	6	7	8	9	0
1	A	1	AL	AN	AND	AR	ARE	AS	AT	ATE
2	ATI	B	2	BE	C	3	CA	CE	CO	COM
3	D	4	DA	DE	E	5	EA	ED	EN	ENT
4	ER	ERE	ERS	ES	EST	F	6	G	7	H
5	8	HAS	HE	1	9	IN	ING	ION	IS	IT
6	IVE	J	0	K	L	LA	LE	M	ME	N
7	ND	NE	NT	0	OF	ON	OR	OU	P	Q
8	R	RA	RE	RED	RES	RI	RO	S	SE	SH
9	ST	STO	T	TE	TED	TER	TH	THE	THI	THR
0	TI	TO	U	V	VE	W	WE	X	Y	Z
100\％										

Figure：Screenshot of the Syllabary Cipher component of CrypTool 2 showing the original English Syllabary table as presented in＂Military Cryptanalytics Part 1＂

Introduction (1/3) - The Cipher

The Syllabary cipher is a monoalphabetic substitution cipher, which uses a 10×10 lookup table. The table consists of single letters and the most frequent syllables of the language. It also contains all digits from 0 to 9 . The digits left of the rows and on top of the columns define the ciphertext symbols.

In the previous shown table, the "A" is encrypted by "11," the "1" by "12", the "AL" by " 13 ", etc.

More details can be found in [1, 2]. You can test the cipher in CrypTool 2 [3].

Introduction (2/3) - Different Keying Schemes

There are three different ways how to apply keys with this cipher:

1. An unknown digit key ${ }^{1}$ is used for rows and column indices, but the table content is known.
2. An unknown table keyword ${ }^{1}$ is used to permute the table, but the digit key is known.
3. Both, the digit key and the table keyword are unknown.

Introduction (3/3) - How to Apply Keys

Digit keys: Let's assume our digit key is "98765432101234567890". In this case, we would write "9876543210" on top of the columns and "1234567890" left of the rows. We only use each digit exactly once for the columns and exactly once for the rows.

Keyword: Let's assume our keyword is "SECRETKEY". In this case, we would fill into the table (from left to right and top to bottom) the elements "SE", "C", "RE", "T", "K", "E", "Y" and then the remaining elements of the original (English) table. We always use the original (English) table as baseline for the table generation. Clearly, we only use each key element once and omit elements we already used.

Challenge

This is the fifth challenge in a series of five challenges with the Syllabary cipher.

With this challenge, we provide a ciphertext with 2026 digits.
Neither the digit key, nor the table or the keyword are known.

- Digit key: (unknown!)
- Keyword: (unknown!)
- Table: (unknown, randomly ordered)

To solve the challenge, you have to provide the first 62 characters of the plaintext in uppercase letters.

Resources

\rightarrow Ciphertext5.txt: The ciphertext with 2026 digits.

References

1. William F. Frederick and Lambros D. Callimahos: Military Cryptanalytics Part 1 (1959)
2. K. Schmeh: Can you break the crypto-number-table challenge?
scienceblogs.de/klausis-krypto-kolumne/2018/09/01/can-you-break-the-crypto-number-table-challenge (2018)
3. CrypTool 2: www.cryptool.org/de/ct2/downloads
