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Discrete Logarithm Problem (DLP)

The term Discrete Logarithm Problem (DLP) refers to the problem
of solving the equation

αx = β,

i. e., computing the secret integer x, where the base α is a �xed
element of a �nite group and β is chosen randomly in the subgroup
G = 〈α〉 generated by α.
The cryptographic strength of the NIST standard DSA [3] for
digital signatures is related to the di�culty of DLP in a cyclic
subgroup G of the multiplicative group L∗ of a �nite �eld L. Also
in the ElGamal encryption the security depends on the intractability
of the DLP.
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To avoid attacks using the Chinese Remainder Theorem [4], one
restricts the computation to a subgroup of prime order l. As the
computations are done in a group, generic attacks like the Pollard
rho method or Baby-Step-Giant-Step techniques can be applied;
their running time is O(

√
l). For concrete instantiations of the

group, other attacks might be feasible to mount, most prominently
index calculus attacks.
For example if the group is a subgroup of the multiplicative group
of a �nite �eld L, index calculus attacks in the �eld can be used.
Their complexity is subexponential in the size of the �nite �eld. To
balance the strengths of the attacks it is a common choice is to use
a prime order subgroup of L∗; this is also suggested in the DSA
standard.
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In the original standard, L has characteristic 2. In contrast, our
challenge concerns the case of �medium� �elds, where L = GF(pn)
with a balanced relation between characteristic p and extension
degree n.

There are several reasons for applying such �elds if just a �nite �eld
is needed. Most prominently is the good performance of modular
arithmetic if the modulus �ts exactly in one word of the processor.
In addition to this, one can use primes such that a sparse
polynomial generates the extension �eld. In particular the binomial
xn − 2 is preferred due to its small absolute term. These ideas are
used in Optimal Extension Fields [2] and Processor Adapted Finite

Fields [1] and the cited papers report good timings for the �nite
�eld arithmetic.
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For powers of very small primes and for large prime �elds the
function-�eld sieve and the number-�eld sieve are highly optimized;
for intermediate �elds algorithms with the same asymptotic
behavior exist but the actual running times are slower.

Our challenge aims at encouraging research into the intermediate
range. The parameters are chosen in a manner that the subgroup
has very large order (380 bits), such that the generic square root
attacks cannot be applied successfully, but the �nite �eld itself has
less than 550 bits. Therefore, we expect that a successful
computation of the discrete logarithm in our challenge requires at
least a new implementation, if not new ideas for index calculus
attacks.
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The Challenge

Consider the �nite �eld L = GF(pn) for n = 17 and
p = 4294939399. Let ξ be a root of the binomial x17 − 2, which
is irreducible over GF(p). We have

L = GF(p)[ξ].

The challenge is to compute the discrete logarithm of β with
respect the base α for the α,β ∈ L∗ speci�ed below.

In the concrete implementation in a DSA scheme this means that
the private key, which is used for signing documents, could be
recovered from the public key, which is used to verify the signature
of a document.
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Detailed Technical Specification

The prime p was chosen to be close to 232, namely
232 − p = 27897, to facilitate use of fast modular arithmetic like in
Montgomery representation.
We have p ≡ 1 mod 17 such that the 17-th roots of unity are in
GF(p). One easily checks that the binomial x17 − 2 is irreducible
and can therefore in fact be used to construct the �eld extension.

The element α ∈ L = GF(p)[ξ] is de�ned as

α = 3861058060ξ16 + 3564986786ξ15 + 1476915385ξ14 + 378294953ξ13 +

527539873ξ12 + 2565028647ξ11 + 3524396659ξ10 + 4208613634ξ9 +

2860013058ξ8 + 461970796ξ7 + 514597914ξ6 + 2797025912ξ5 +

3012586214ξ4 + 3353183518ξ3 + 2428759997ξ2 + 195705603ξ+

2298553666.
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The subgroup generated by α has the following 380 bit prime order

` = 3194274600283190021925942572594714035996910070656430194860

936364641961073364015785568871588532439931412572327063029.

The complete factorization reads

|L∗| = 2·3·173 ·19·103·130363·93668369·13044863892859·1961650989234689·`.

The element β of 〈α〉 is de�ned as

β = 1853776844ξ16 + 2979288427ξ15 + 548791496ξ14 + 1098158376ξ13 +

2912162188ξ12 + 591706410ξ11 + 396109450ξ10 + 1162714473ξ9 +

2696515674ξ8 + 2661468235ξ7 + 1529382184ξ6 + 3787954269ξ5 +

1349496244ξ4 + 1154080109ξ3 + 532866501ξ2 + 1397637821ξ+

752038700.

It equals αx for some secret integer x. The challenge is to compute
this secret key for the given α and β.
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