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Introduction

The Fully Homomorphic Encryption (FHE) scheme as described by
Gentry and Halevi [GH2010] works mainly because the private key
is included in the public key. This enables the scheme to �refresh�
ciphertexts by decrypting and re-encrypting homomorphically. A
downside on this property is obviously that the private key might be
extracted from the public key.

To prevent this, the private key is added in the form of a sparse
subset sum. The inability of an adversary to extract the private key
from the public key is related to the Sparse Subset Sum Problem
(SSSP). This problem states that it is computationally infeasible to
determine whether or not a sparse subset of a large set of integers
sums up to zero or another predetermined value.
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Relation between FHE and SSSP
In the FHE scheme, the private key is a single integer, called w.
For security reasons, w and the numbers in the given large set are
very big. To reduce the size a bit, the large set is subdivided into s
smaller sets, called Bk. Each of these sets contains S integers.
They are generated by geometric progressions, i.e. Bk = {xk · Ri
mod d : i = 0, . . . ,S− 1}, for k = 1, . . . , s.

Now there exists a sum, consisting of s integers taken from distinct
Bk, which sums up to w mod d. In other words, there exists a
s-dimensional vector σ such that

∑s
k=1 xk · Rσk = w mod d.

This is in relation to SSSP, but instead of having a large set of
integers and a known result, we have a large set of integers (the
union of the Bk) and an unknown result (w). As additional
information one knows that the sum contains exactly one element
out of each of the smaller sets Bk.
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Additional information
But there is more information included in the public key. To be able
to use the private key in the scheme, it should be known
�homomorphically�. This means that using homomorphic
operations, the private key can be reconstructed while everything
remains encrypted. Therefore, c-dimensional vectors η(k) (for
k = 1, . . . , s) are created. For these vectors, it holds that

c∑
i=0

c∑
j=i+1

η(k)i ·η(k)j · ((i−1) · c−
(
i

2

)
+(j− i−1)) = σk, (1)

for k = 1, . . . , s.

Furthermore, exactly two of the entries for each η(k) are non-zero
and equal 1. Now every entry of these vectors are encrypted under
the public key. The resulting vectors with these encrypted entries
are called η̄(k).
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The Challenge

The challenge is to reconstruct the private key from the public key
by �nding the vector σ which yields w. All the information to
reconstruct the private key is given in the public key, so it is
theoretically possible, but practically infeasible.
In this challenge, the following parameters are used:

S: 512

s: 15

c: 46

R: 67108864
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The Challenge

In the zip archive for this challenge d (d.txt), the xk (x(1).txt -
x(15).txt), and the encrypted vectors η̄(k) (eta(1).txt - eta(15).txt)
are given. One can verify the solution by decrypting the vectors
η̄(k), equation 1 should hold. Decryption of a ciphertext c is given
by (c ·w mod d) mod 2, where the modulo d operation results
in the interval [−d/2,d/2).

The answer to the challenge is the vector σ, with the entries
seperated by commas and no spaces. For instance, if σ = (1, 2, 3),
the answer would be �1,2,3�.
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