MysteryTwister C3

THE CRYPTO CHALLENGE CONTEST

Spanish Strip Cipher - Part 3

Author: Luis Alberto Benthin Sanguino

February 2014

Introduction

The Spanish Strip Cipher (SSC) is a homophonic substitution cipher, in which a plaintext letter not only maps to one ciphertext character (as in monoalphabetic substitution ciphers), but it can map to different ones. In this kind of ciphers, the ciphertext characters are called homophones, which are arranged in a table, where each column is mapped by one letter of the plaintext alphabet. During the Spanish civil war (1936-1939) this method was widely adopted by both sides, Republicans and Nationalists.

Normally, the number of homophones in a column is related with the frequency of a plaintext letter. For example, in a Spanish text, the letter E occurs with a frequency of 13.68% approximately. On the other hand, the letter N approximately occurs with a frequency of 6.71%. Thus, the column assigned to the letter E should contain more homophones than the column assigned to the letter N. In this way, frequency analysis attacks become more difficult.
Contradictorily, in the original variant of SSC a column contains 3 or 4 homophones, regardless of the letters frequency.

In addition to the homophones table, the SSC encompasses three more elements (see Figure 1): A random alphabet, a keyword, which is used to generate the random alphabet, and an initial position that is used to shift the random alphabet.

Keyword: cryptool

Initial position: B in C

Encryption

In order to encrypt a plaintext, sender and receiver agree on a key which consists of three elements: a keyword, a homophones table, and an initial position. After generating and shifting the random alphabet, the encryption can begin. For each plaintext letter:

1. We look for the same letter in the random alphabet.
2. We substitute the plaintext letter by one the homophones of the same column of the random-alphabet letter.

For instance, the plaintext letter A can be replaced by the homophones 27, 52 and 79. The selection of one of these homophones can be performed either sequentially or randomly.

Encryption - Example

A plaintext is encrypted using the key from Figure 1.

Plaintext	U	N	I	V	E	R	S	I	D	A	D
Ciphertext	36	22	14	18	17	12	10	43	11	27	38

Decryption

The decryption is a straightforward process, in which each ciphertext homophone is replaced by its corresponding letter of the random alphabet.
Example: A ciphertext is decrypted using the key shown in Figure 1.

Ciphertext	10	17	35	12	39	33
Plaintext	S	E	C	R	E	T

Challenge

Please find the corresponding plaintext!

Challenge - Transcript

232231023058106855140316904181051744355045 317868040550324823848377514744818314081732 763810812419043538321645031632106828038364 196081693298450340223234354873055531165147 827898906381480631837408329862686590917663 646884160583283239314869449083116874824810 08434490148174511835325049448414

Hints

1. This telegram was sent during the Spanish civil war (Summer/ Fall 1936). It is most likely to be a Spanish text. However, it can also be a text written in Basque.
2. It is likely that this telegram was encrypted with the SSC. Nonetheless, some variants should be considered:

- The columns may content between 3 and 5 homophones.
- The ordered alphabet can include the digraphs "LL" and "CH", or also can exclude the letter "W".

