MysteryTwister C3

A CRYPTO CHALLENGE BY CRYPTOOL

NOT-SO-SECRET MESSAGE FROM MALAWI – PART 2 (ECC)

by Ed Schaefer Level II Problem May 2010

Level II problem by Ed Schaefer

Not-so-secret message from Malawi – Part II.

For elliptic curve cryptography to be safe, you should pick your elliptic curve carefully. Having not learned from my RSA debacle, I forgot the above principle when I asked my friend Kondwani in Malawi to encrypt a message for me using the elliptic curve version of the ElGamal message exchange system. Let me explain how that works.

Let \mathbf{F}_p be the finite field with p elements for a large prime p. (Note that many cryptographers would use the notation GF(p) for \mathbf{F}_p .) Let E be an elliptic curve over \mathbf{F}_p . Assume $G \in E(\mathbf{F}_p)$ is a point on E with coordinates in \mathbf{F}_p that generates a large subgroup of $E(\mathbf{F}_p)$. Note that p, E and G are public parameters. Let a_E be my private key number (a positive integer) and $a_E G$ be my public key point. Kondwani has a plaintext message that he encodes on the x-coordinate of a point $Q \in E(\mathbf{F}_p)$. Kondwani chooses a random positive integer k. He sends me the two points kG and $Q + ka_E G$. I'll let you convince yourself that Kondawni can find those two points and that I can find Q from those two points without needing to determine k.

I was the one who originally set up the parameters of the system. We use p = 1937795458736239813839407261656518979123304596217and the curve $y^2 = x^3 + 963218343336110113016174981681596148974425738450x^2$ + 646590556709322492479302728449481955110774251117x + $137346957280116216304262434997226868149786911218 over F_p. We use$ G = (1, 209937098944427720931521991946579213161073163246) as the generating point. My public key point is $a_EG = (1143911082840865713502452266564665689548850979758,$ 454313542460131680786417516477594142172065017820).

Kondwani sends me the point

kG = (629912080964738498794283591624344703079802252096, 72996823391950846729239691151804325740212885805) and the point $Q + ka_{E}G$ = (1917939359284216283029572784538215468729955703651, 1271169974899687009189382606250304914275543255608).

Find *Q* and then turn its *x*-coordinate into a binary string. Append a 0 at the left. That is the ASCII representation of the plaintext message, which is the codeword.

For example, if the x-coordinate were $22895 = (1011001\ 01101111)_2$, then we append 0 on the left to get 01011001\ 01101111 which is the ASCII encoding of *Yo*.

PS: You might be wondering what Kondwani would have done when his message had not been the *x*-coordinate of a point in $E(\mathbf{F}_p)$. We could pad the message with 8 bits and try each of the 256 padded messages until we find one that is the *x*-coordinate of a point in $E(\mathbf{F}_p)$. Since about half of all elements of

A CRYPTO CHALLENGE BY CRYPTOOL