
THE LORA CIPHER
LOGIC RANDOMNESS – PART 1

Author: George Theofanidis

February 2020



Introduction (1/7)

"LoRa", an abbreviation of “Logic Randomness”, is a new cipher
that calculates the ciphertext by using a logic expression as a key
and a number of binary textfiles as operands for the logic expres-
sion.

For a better understanding about logic expressions please have a
look at these websites [1], [2], [3], and [4].

In order to implement the LoRa cipher, the following steps must be
accomplished.

Author: George Theofanidis 2 / 22



Introduction (2/7)
Encryption:

1. Convert the plaintext to binary (the result is still a text file
but it contains only 0s and 1s, maybe separated with
whitespaces which can be ignored).

2. Create n-1 text files, where n is at least 2. Each file is a
group of random bits, having the same length as the plaintext,
expressed in binary, as in the previous step.

3. Generate a random logic expression which uses n different
operands where the operator applied to the plaintext is always
XOR.

Remark: In mathematics an expression is described using operands
and operators. So if we have a XOR b, then a and b are operands,
and XOR is the operator.

Author: George Theofanidis 3 / 22



Introduction (3/7)

4. Calculate the resulting file by applying the logic expression to
each bit of all n binary textfiles (so the plaintext and the n-1
randomly chosen files are the input to this encryption
function).

5. The ciphertext is a concatenation of the values of the n-1
randomly chosen files and of the calculated resulting file (so
all except the plaintext), separated with a “/” between the
files. Send the ciphertext to the receiver, but not the plaintext
and not the logic expression.

6. Agree out-of-the-band with the receiver on the key (the logic
expression).

Author: George Theofanidis 4 / 22



Introduction (4/7)

Decryption:

1. Apply the logic expression to all files received within the
ciphertext and find the binary plaintext.

2. Convert the binary plaintext to a textfile.

Just with any symmetric cipher, the key has to be exchanged out-
of-the-band. So if the encrypted data and the binary textfiles are
transmitted with a certain transport medium, the key (here the
logic expression) must be transmitted with another transport medium,
i.e. via encrypted email or via a messenger like WhatsApp or Wire.

All n files – the plaintext and the n-1 randomly chosen files – must
be involved at the logic expression, either as they are, or inverted.

Author: George Theofanidis 5 / 22



Introduction (5/7)

For simplicity purposes:

I The logic operator applied to the calculated resulting file is
always XOR (eXclusive OR).

The logic expression could be transmitted in either one of two
ways: in a mnemonic form or in an explicit, detailed form.

The mnemonic form is a simplified expression where operators are
replaced by a certain character. For example, the NOT logic opera-
tor is symbolized as the mnemonic symbol ‘.

The logic expression is calculated from left to right, in sequential
order, not following the order of operator precedence.

Author: George Theofanidis 6 / 22



Introduction (6/7)

Assuming the number of the given files is n, then

I The files can be used as they are, or inverted with the NOT
operator, so there are already 2n operator choices.

I There are on top n-1 logic operators in two modes. In the
simple mode, an operator can be either AND, OR, or XOR. In
the extended mode, an operator can take one of the following
six forms: AND, OR, NAND, NOR, XNOR, or XOR.

Author: George Theofanidis 7 / 22



Introduction (7/7)

I To sum up the last two bullets, the set of possible operators is
either NOT, AND, OR, XOR
or NOT, AND, OR, NAND, NOR, XNOR, XOR.

I So, the total combinations to produce a logic expression in
simple mode are 2(n−1) × 3(n−2), in the extended mode
there are 2(n−1) × 6(n−2) possible expressions. For 26 files,
this leads to 9,476,762,676,643,233,792 combinations in
simple mode and 158,993,694,406,781,688,266,883,072
combinations in extended mode.

Author: George Theofanidis 8 / 22



Example – Encryption (1/7)

The example plaintext is “The quick brown fox,jumps over the lazy
dog!”.

Written in binary form [5], this is:
01010100011010000110010100100000011100010111010101101
00101100011011010110010000001100010011100100110111101
11011101101110001000000110011001101111011110000010110
00110101001110101011011010111000001110011001000000110
11110111011001100101011100100010000001110100011010000
11001010010000001101100011000010111101001111001001000
0001100100011011110110011100100001

Author: George Theofanidis 9 / 22



Example – Encryption (2/7)

We want 3 files a, b, c to be involved.
(So the total number of combinations are 22 × 3 = 12):

a =
10011111100110110101101001110001101001100100111001100
01101001010101011011011011101101110101101010101101000
01111100000111110001101010100100000100100011001000001
01100001111100111101110111110111011111110110000001001
11011100100011100110010010001001001111110110010110111
10001011100010101011100011011100010000011110101111010
0101000111011111110100111100101111

Author: George Theofanidis 10 / 22



Example – Encryption (3/7)

b =
11011110011011011010010001010111000101101100110110111
11100100100110100110000111110110000111011011001100010
11010001110000110010111010001011001101011100011010011
10110101000001101010001101111001100011101000011100110
01100001001010111011101011111000000100111110011101010
01100110110001101011111001110000101101100011000000001
10110000101100100011101000000

We can choose a random logic expression in three forms:

I in a mnemonic (simplified expression) form as: a’@b’#c
I in a detailed form as: not(a) OR not(b) XOR c
I in choices form as: 22231

Author: George Theofanidis 11 / 22



Example – Encryption (4/7)

Standardization of the choices form:

I The odd indices of this form deal with the state of the files:
I If an index is 1, the file is not inverted and stays as it is; if the
index is 2, the file is inverted with the not_to_string function

I The even indices deal with the choice of logic operators
between the files:

I in the simple mode of the cipher: 1 for AND, 2 for OR, and 3
for XOR

I in the extended mode of the cipher: 1 for AND, 2 for OR, 3
for NAND, 4 for NOR, 5 for XNOR, and 6 for XOR

Author: George Theofanidis 12 / 22



Example – Encryption (5/7)

I In the mnemonic form, logical operators are represented by
the sequence of characters on the standard QWERTY
keyboard. In simple mode, ! stands for AND, @ for OR, # for
XOR; and in advanced mode ! stands for AND, @ for OR, #
for NAND, $ for NOR, % for XNOR and ˆ for XOR. As
already mentioned, in the mnemonic form the symbol ’ stands
for the NOT operator.

I Security could be raised if a transposition key is added. A
value of i.e. 4-3-1-2 would mean to transpose the initial files
from starting positions 1-2-3-4 to 4-3-1-2 and then follow the
rest of the procedure.

Author: George Theofanidis 13 / 22



Example – Encryption (6/7)

In order to find the last file, i.e. c, we “solve” the logic expression,
so

not(a) OR not(b) XOR c == plaintext,

is converted as

c = ((not(a) OR not(b)) XOR (plaintext)

We submit 3 files (a,b,c) with a certain transmission medium.

We submit the mnemonic logic expression with another transmis-
sion medium.

Author: George Theofanidis 14 / 22



Example – Encryption (7/7)
Here are all combinations of the operators for this example:

No Mnemonic Detailed Choices Status
1 a!b#c a AND b XOR c 11131 Wrong
2 a!b’#c a AND not(b) XOR c 11231 Wrong
3 a@b#c a OR b XOR c 12131 Wrong
4 a@b’#c a OR not(b) XOR c 12231 Wrong
5 a#b#c a XOR b XOR c 13131 Wrong
6 a#b’#c a XOR not(b) XOR c 13231 Wrong
7 a’ !b#c not(a) AND b XOR c 21131 Wrong
8 a’ !b’#c not(a) AND not(b) XOR c 21231 Wrong
9 a’@b#c not(a) OR b XOR c 22131 Wrong
10 a’@b’#c not(a) OR not(b) XOR c 22231 Correct
11 a’#b#c not(a) XOR b XOR c 23131 Wrong
12 a’#b’#c not(a) XOR not(b) XOR c 23231 Wrong

Author: George Theofanidis 15 / 22



Example – Decryption

1. We receive the 3 files and the logic expression.
2. We use the logic expression and the 3 files to calculate the

plaintext (in binary).
3. We convert the binary textfile of the plaintext into readable

text (ASCII).

Note: All needed calculations can be done, step by step by isolated
functions, using the submitted Python script. The syntax for de-
coding is described in the following slide, reading the ciphertext
and the key in choices form.

Note: The syntax for the example and the challenge is different,
due to different names of the files involved.

Author: George Theofanidis 16 / 22



Syntax of the Python Command Line Tool

In order to encrypt / decrypt, keep the program and all needed files
in the same folder. The program is written in Python 3.

Decryption for the example:

1. Reading the key from a file:
python LoRa-01.py -kf key_example.txt -df
ciphertext_example.txt

2. Reading the key from a string at the command line:
python LoRa-01.py –ks 22231 -df ciphertext_example.txt

Remark: If there are n files included in the ciphertext, i.e. n-1 bi-
nary text files plus the resulting text file, then the lengths of the
key in choices form is always 2n-1.

Author: George Theofanidis 17 / 22



Challenge (1/2)

Use the 5 binary textfiles (a,b,c,d,e).

The 5 files are contained in a separate file “ciphertext_challenge.txt”.
The files are separated by “/”.

The logic expression is unknown.

The total number of combinations to produce this logic expression
is:

24 × 33 = 16 × 27 = 432

The plaintext is in English, it contains spaces and exclamations
marks. In this part of the challenge, neither extended mode, nor a
transposition key (see page 13) was applied.

Author: George Theofanidis 18 / 22



Challenge (2/2)

The solution should be the logic expression in mnemonic form.

So if the output of the program is for example

I mnemonic form: a!b@c’#d!e
I detailed form: a AND b OR not(c) XOR d AND e
I choices form: 111223111

send a!b@c’#d!e as the solution.

Author: George Theofanidis 19 / 22



References

1. https://en.wikipedia.org/wiki/Boolean_expression
2. https://realpython.com/python-operators-
expressions/

3. http://openbookproject.net/thinkcs/python/
english3e/conditionals.html

4. https://www.geeksforgeeks.org/python-logical-
operators-with-examples-improvement-needed/

5. https://www.rapidtables.com/convert/number/ascii-
to-binary.html

Author: George Theofanidis 20 / 22

https://en.wikipedia.org/wiki/Boolean_expression
https://realpython.com/python-operators-expressions/
https://realpython.com/python-operators-expressions/
http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/
https://www.rapidtables.com/convert/number/ascii-to-binary.html
https://www.rapidtables.com/convert/number/ascii-to-binary.html


Additional Files

I ciphertext_example.txt
å the ciphertext example

I key_example.txt
å the key example in mnemonic form

I LoRa-01.py
å Python 3 script to decrypt and encrypt with this cipher.

The script is called with either python LoRa-01.py or
python3 LoRa-01.py depending on the system
environment.

I ciphertext_challenge.txt
å the ciphertext of this challenge

Author: George Theofanidis 21 / 22



The MTC3 team wishes you success!

Author: George Theofanidis 22 / 22


