MysteryTwister C3

THE CRYPTO CHALLENGE CONTEST

UnUSUAL ENCRYPTION USING A DIophantine equation

Author: Viktor Veselovsky
August 2011

Introduction

In the field of cryptanalysis it is a common problem to factorize a really large number to be able to recover a secret message. For example in RSA it is necessary to find integer values of x and y so that $x \cdot y=n$ for a big n.

What about if we change the left hand side of the equation to something more complex?
For example: $x^{8}+y^{8}$

Assuming n is of approximately the same size in both cases. What is more difficult to solve? $x \cdot y=n$ or $x^{8}+y^{8}=n$?

Try the following problem ...

Find positive integer numbers x and y such that $x^{8}+y^{8}=n$.

Then you need to convert
$\left((x+y)^{9} \bmod \left(x^{9}+y^{9}\right)\right)-s$
into HEX code and look up the corresponding ASCII symbols to see the secret message.

Please enter this secret message as the solution of this challenge. Mind punctuation, spelling and spaces!

Necessary information

$\mathrm{n}=17223507887602526420151651536619310810581211968884712$ 6004716224532776723116052328171863767706081964839632836 05920702226380449555021499188148868557483176337161377
$s=23427456865831531469841846134062427224696791669617935$ 5961390802738600542719445675229379394072632986775058800 14233705610133132464032085465605683426762387365644294 8859381395506665599

